Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 27 Striaght Line in Space Exercise Very Short Answer question 17

Answers (1)

Answer:

Required answer is  \vec{r}=5 \hat{i}-4 \hat{j}+6 \hat{k}+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})

Hint:

Use properties of vector

Given:

\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}

Solution:

We have,

\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}

The given line passes through the point  \left ( 5,-4,6 \right ) and has direction ratios proportional to  3,7,2

Vector equation of the given line passing through the point having position vector

\vec{a}=5 \hat{i}-4 \hat{j}+6 \hat{k}  and parallel to a vector  \vec{b}=3 \hat{i}+7 \hat{j}+2 \hat{k}  is

\begin{aligned} &\vec{r}=\vec{a}+\lambda \vec{b} \\ & \end{aligned}

\vec{r}=5 \hat{i}-4 \hat{j}+6 \hat{k}+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads