Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 27 Straight Line in Space  Exercise 27.2 Question 11  Maths Textbook Solution.

Answers (1)

Answer: the angle between the pairs given in the question \cos ^{-1}\frac{2}{3}

Given: find the angle between two lines on of which has direction ratio (2,2,1) while other one is obtained by joining the points (3,1,4) and (7,2,12)

Hint: \begin{aligned} &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}} \\ \end{aligned}

Solution: now \left ( a_{1},b_{1},c_{1}\right )=2,2,1

    While  \begin{aligned} &a_{2}=\left(x_{2}-x_{1}\right)=4 \\ \end{aligned}

             \begin{aligned} &b_{2}=\left(y_{2}-y_{1}\right)=1 \\ &c_{2}=\left(z_{2}-z_{1}\right)=8 \\ \end{aligned}

\begin{aligned} &\cos \theta=\frac{8+2+8}{\sqrt{2^{2}+2^{2}+1^{2} \sqrt{1^{2}+1^{2}+8^{2}}}} \\ \end{aligned}

\begin{aligned} &=\frac{18}{\sqrt{9 \sqrt{81}}} \\ &=\frac{2}{3} \\ &\theta=\cos ^{-1} \frac{2}{3} \end{aligned}

So the angle between the pairs will be \cos ^{-1}\frac{2}{3}

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads