Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 27 Straight Line in Space Exercise Very Short Answer Question 20

Answers (1)

Answer:

Required answer is  \cos ^{-1} \frac{19}{21}

Hint:

 Use the equation of a line in space.

Given:

\begin{aligned} &\vec{r}=(2 \hat{i}-5 \hat{j}+\hat{k})+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \\ & \end{aligned}

\vec{r}=(7 \hat{i}-6 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 k) 

Solution:

Let  \theta  be the angle between the given lines

The given lines are parallel to the vectors  \vec{b}_{1}=3 \hat{i}+2 \hat{j}+6 \hat{k} \text { and } \vec{b}_{2}=\hat{i}+2 \hat{j}+2 \hat{k}    respectively

So, the angle \theta  between the given lines are given by

\begin{aligned} &\cos \theta=\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|} \\ & \end{aligned}

          =\frac{(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{i}+2 \hat{j}+2 \hat{k})}{\sqrt{3^{2}+2^{2}+6^{2}} \sqrt{1^{2}+2^{2}+2^{2}}}

          \begin{aligned} &=\frac{19}{\sqrt{49} \sqrt{9}} \\ & \end{aligned}

         =\frac{19}{21} \\

\theta=\cos ^{-1} \frac{19}{21}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads