Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 27 Straight Line in Space Exercise Very Short Answer Question 7

Answers (1)

Answer:

Required answer is  \frac{4}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{2}{\sqrt{29}}

Hint:

Use properties of vector

Given:

\frac{x-2}{2}=\frac{2 y-5}{-3}, z=2

Solution:

We have,

\frac{x-2}{2}=\frac{2 y-5}{-3}, z=2

The equation of the given line can be rewritten as,

\begin{aligned} &\frac{x-2}{2}=\frac{y-\frac{5}{2}}{-\frac{3}{2}}=\frac{z-2}{1} \\ & \end{aligned}

\frac{x-2}{4}=\frac{y-\frac{5}{2}}{-3}=\frac{z-2}{2}

The direction ratios of the line parallel to AB are proportional to 4, -3, 1

The direction cosines of the line parallel to AB proportional to

\begin{aligned} &\frac{4}{\sqrt{4^{2}+(-3)^{2}+2^{2}}}, \frac{-3}{\sqrt{4^{2}+(-3)^{2}+2^{2}}}, \frac{2}{\sqrt{4^{2}+(-3)^{2}+2^{2}}} \\ & \end{aligned}

=\frac{4}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{2}{\sqrt{29}}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads