Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 27 Straight Line in Space exercise 27.1 question 13 maths textbook solution

Answers (1)

Answer :-

\begin{aligned} &\frac{x-1}{1}=\frac{y+2}{2}=\frac{z+3}{-2} \\ &\vec{r}=(\hat{\imath}-2 \hat{\jmath}-3 \hat{k})+\lambda(\hat{\imath}+2 \hat{\jmath}-2 \hat{k}) \end{aligned}

Hint :-

\vec{r}=x\hat{\imath}-y \hat{\jmath}+z \hat{k}

Given :-

The line passes through the point \hat{\imath}-2 \hat{\jmath}-3 \hat{k} and parallel to the line joining with position vectors   \hat{\imath}- \hat{\jmath}+4 \hat{k} and 2\hat{\imath}+ \hat{\jmath}+2 \hat{k}

Solution :-

The points of position vector \hat{\imath}- \hat{\jmath}+4 \hat{k} and 2\hat{\imath}+ \hat{\jmath}+2 \hat{k} are P(1 , -1 , 4) and Q(2 , 1 , 2)

D.R of PQ =Q-P= (1 , 2 , -2)       ,       \overrightarrow{b}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}

Points of P.V  \overrightarrow{b}=\hat{\imath}-2 \hat{\jmath}-3 \hat{k} are (1 , -2 , -3)

The Cartesian equation of the line having the point (1 , -2 , -3)  and

D.R (1 , 2 , -2)   are

                                  \frac{x-1}{1}=\frac{y+2}{2}=\frac{z+3}{-2}

And vector equation are

\begin{aligned} \vec{r} &=\vec{a}+\lambda \vec{b} \\ &=(\hat{\imath}-2 \hat{\jmath}-3 \hat{k})+\lambda(\hat{\imath}+2 \hat{\jmath}-2 \hat{k}) \end{aligned}

                        Where \lambda is constant parameter.

Posted by

Infoexpert

View full answer