Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 27 Straight Line in Space exercise 27.1 question 15 maths textbook solution

Answers (1)

Answer :-  The points are collinear

Hint :-

\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}

 Given :-

P.V are 2 \hat{\imath}+3 \hat{\jmath}, \hat{\imath}+2 \widehat{\jmath}+3 \hat{k}, 7 \hat{\imath}+9 \hat{k}  

Solution :-

The points of P.V 2 \hat{\imath}+3 \hat{\jmath}, \hat{\imath}+2 \widehat{\jmath}+3 \hat{k}, 7 \hat{\imath}+9 \hat{k}  are (-2 , 3 , 0) , (1 , 2 , 3) , (7 , 0 , 9)

The equation of the line passing through the point (-2,3,0) and (1 , 2 , 3) are

\begin{aligned} &\frac{x+2}{1+2}=\frac{y-3}{2-3}=\frac{z-0}{3-0} \\ &\Rightarrow \frac{x+2}{3}=\frac{y-3}{-1}=\frac{z-0}{3} \end{aligned} ----- (1)

Putting (7 , 0 , 9) in (1) , we get

\begin{aligned} &\frac{7+2}{3}=\frac{0-3}{-1}=\frac{9}{3} \\ \end{aligned}

\Rightarrow 3,3,3

Since ( 7 , 0 , 9) satisfying equation (1)

Hence it is collinear.

Posted by

Infoexpert

View full answer