Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 27 Straight Line in Space exercise 27.1 question 17 maths textbook solution

Answers (1)

Answer :-

\frac{x+\frac{1}{3}}{2}=\frac{y-\frac{1}{3}}{1}=\frac{z-1}{-6}…cartesian equation of line

\left(-\frac{1}{3} \hat{\imath}+\frac{1}{3} \hat{\jmath}+\hat{k}\right)+\lambda(2 \hat{\imath}+\hat{\jmath}-\widehat{6 k})…vector equation of line

\left(\frac{-1}{3}, \frac{1}{3}, 1\right)…the fixed point through which the line passes   ;    

(2,1,-6)….direction ratios of the line

Hint :-

\overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b}

Given :-

3x+1=6y-2=1-z

Solution :-

The given line can be written as \frac{x+\frac{1}{3}}{\frac{1}{3}}=\frac{y-\frac{2}{6}}{\frac{1}{6}}=\frac{z-1}{-1} 

\Rightarrow \frac{x+\frac{1}{3}}{2}=\frac{y-\frac{1}{3}}{1}=\frac{z-1}{-6}

Thus the line passes through the point \left(\frac{-1}{3}, \frac{1}{3}, 1\right) 

vector equation of the point will be \left(\overrightarrow{a}=-\frac{1}{3} \hat{\imath}+\frac{1}{3} \hat{\jmath}+\hat{k}\right)

The direction ratios are proportional to    (2,1,-6)

and its vector equation will be \overrightarrow{b}=2 \hat{\imath}+\hat{\jmath}-\widehat{6 k}

Vector Equation of line

\overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b}

       =\left(-\frac{1}{3} \hat{\imath}+\frac{1}{3} \hat{\jmath}+\hat{k}\right)+\lambda(2 \hat{\imath}+\hat{\jmath}-\widehat{6 k})   

 

Posted by

Infoexpert

View full answer