Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 27 Straight Line in Space exercise Multiple choice question 2

Answers (1)

Answer: Correct answer is A.

Hint: Use vector cross product.

 

Given:: \frac{x}{1}=\frac{y}{2}=\frac{z}{3} \text { and } \frac{x-1}{-2}=\frac{y-2}{-4}=\frac{z-3}{-6}

 

Solution: The equation of the given lines are

\begin{aligned} &\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \rightarrow(1) \\\\ &\text { and } \frac{x-1}{-2}=\frac{y-2}{-4}=\frac{z-3}{-6} \\\\ &\Rightarrow \frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3} \rightarrow(2) \end{aligned}
Thus the two lines are parallel to the vector \vec{b}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k} and pass through the points (0,0,0)and (1,2,3).

Now,

\begin{aligned} &\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right) \times \vec{b} \\\\ &=(\hat{\imath}+2 \hat{\jmath}+3 \hat{k}) \times(\hat{\imath}+2 \hat{\jmath}+3 \hat{k}) \\\\ &=\overrightarrow{0} \\\\ &\Rightarrow(\vec{a} \times \vec{a}=\overrightarrow{0}) \end{aligned}

Since the distance between the two parallel lines is 0, the given lines are coincident.

So, the correct option is (a) coincident.

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads