Get Answers to all your Questions

header-bg qa

A car is moving on a circular path of radius 600 \mathrm{~m} such that the magnitudes of the tangential acceleration and centripetal acceleration are equal. The time taken by the car to complete first quarter of revolution, if it is moving with an initial speed of 54 \mathrm{~km} / \mathrm{hr} ist\left(1-e^{-\pi / 2}\right) \mathrm{s} . The value of \mathrm{t} is _____________.

Option: 1

40


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\begin{aligned} & \frac{d v}{d t}=\frac{v^2}{\mathrm{R}} \\ & \frac{v d v}{d x}=\frac{v^2}{R} \\ & \frac{d v}{d x}=\frac{v}{R} \\ & \int_{15}^v \frac{d v}{v}=\int_0^x \frac{d x}{R} \\ & ln(\frac{v}{15})=\frac{x}{R} \\ & \frac{v}{15}=e^{\frac{x}{R}} \\ & v=15 e^{\frac{x}{R}} \\ & \frac{d x}{d t}=15 \mathrm{e}^{\frac{\mathrm{x}}{R}} \\ & \int_0^{\frac{\pi R}{2}} e^{-\frac{x}{R}} d x=15 \int_0^{t 0} d t \\ & t_0=40\left(1-e^{-\frac{\pi}{2}}\right) s \\ & \mathrm{t}=40 \\ & \end{aligned}

Posted by

Nehul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE