Get Answers to all your Questions

header-bg qa

A satellite of mass M is moving in a circle of radius R under a centripetal force given by \left (\frac{-a}{2R^2} \right ). Where a is a constant then 

Option: 1

The kinetic energy of particle is \frac{a}{2R}


Option: 2

The total energy of particle is \frac{-a}{2R}


Option: 3

The kinetic energy of particle is \frac{a}{4R}


Option: 4

The potential energy of particle is  \frac{-a}{4R}


Answers (1)

best_answer

\frac{mv^2}{R}=\frac{a}{2R^2}

mv^2= \frac{a}{2R}

\because KE= \frac{1}{2}mv^2=\frac{a}{4R}

PE= -2KE=\frac{-a}{2R}

TE=KE+PE=\frac{-a}{4R}

Posted by

Gunjita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE