Get Answers to all your Questions

header-bg qa

If sec\ x=\frac{4}{3} and x  is in the first quadrant, find the value of tan\ x

Option: 1

\sqrt{ \frac{7}{9}}


Option: 2

-\sqrt{ \frac{7}{9}}


Option: 3

\sqrt{ \frac{5}{9}}


Option: 4

-\sqrt{ \frac{5}{9}}


Answers (1)

best_answer

Answer: Option (a) \sqrt{ \frac{7}{9}} 

Explanation: 

Given that,

sec\ x=\frac{4}{3}

Using the tangent formula,

tan\ x=\pm \sqrt{sec^{2}x-1}

Since x is in the first quadrant, cos\ x is positive. Thus,

Substituting the value of sec\ x=\frac{4}{3} to get,

tan\ x=\pm \sqrt{\left ( \frac{4}{3} \right )^{2}-1}
tan\ x=\sqrt{ \frac{7}{9}}

Posted by

Gautam harsolia

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE