Get Answers to all your Questions

header-bg qa

If   3\ tan^{-1}x+cot^{-1}x=\frac{\pi}{2}, then  x  equals to

 

Option: 1

-\frac{\pi}{3}


Option: 2

0


Option: 3

\frac{\pi}{3}


Option: 4

1


Answers (1)

best_answer

Given that,

3\ tan^{-1}x+cot^{-1}x=\frac{\pi}{2}

We know that,

cot\ \theta =tan\left ( \frac{\pi}{2}-\theta \right )

 tan^{-1}x=\frac{\pi}{2}-cot^{-1}x

Therefore,

3\ tan^{-1}x+cot^{-1}x=\frac{\pi}{2}
3\ tan^{-1}x+\left (\frac{\pi}{2}-tan^{-1}x \right ) =\frac{\pi}{2}

2\ tan^{-1}x=\frac{\pi}{2}-\frac{\pi}{2}
tan^{-1}x=0

x=0

Posted by

SANGALDEEP SINGH

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE