Get Answers to all your Questions

header-bg qa

In a triangle ABC, medians AD and BE are drawn. if AD=4,\angle DAB=\pi /6\, and\, \angle ABE=\pi /3, then the area of the \triangle ABC\, is

Option: 1

\frac{16}{3 \sqrt{3}}


Option: 2

32/3


Option: 3

64/3


Option: 4

\frac{32}{3 \sqrt{3}}


Answers (1)

best_answer

AG=\frac{2}{3} \: \ AD= \frac{8}{3}

In \bigtriangleup AGB, \angle GAB= \frac{\pi }{6}, \: \angle ABG=\frac{\pi }{3}

Applying, Sine law to \bigtriangleup AGB,

\frac{AG}{\sin \angle BAG}=\frac{BG}{\sin \angle BAG}\Rightarrow BG= \frac{\sin \angle BAG}{\sin \angle ABG}\times \frac{8}{3}

                                              = \frac{1}{\sqrt{3}}\times \frac{8}{3}=\frac{8}{3\sqrt{3}}

                                              BG=\frac{8}{3\sqrt{3}}

Now, \angle AGB= \pi -\left ( \frac{\pi }{3} +\frac{\pi }{6}\right )=\frac{\pi }{2}

\bigtriangleup AGB=\frac{1}{2}AG\cdot BG\sin \left ( \frac{\pi }{2} \right )= \frac{1}{2}\times \frac{8}{3}\times \frac{8}{3\sqrt{3}}=\frac{64}{18\sqrt{3}}

Now, \bigtriangleup ABC=3\times \bigtriangleup AGB= \frac{64}{6\sqrt{3}}=\frac{32}{9}\sqrt{3}

 

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE