Get Answers to all your Questions

header-bg qa

Let a vertical tower \mathrm{A B} of height \mathrm{2 h} stands on a horizontal ground. Let from a point \mathrm{P}on the ground a man can see upto height \mathrm{h} of the tower with an angle of elevation \mathrm{2 \alpha.} When from \mathrm{P}, he moves a distance \mathrm{d} in the direction of \mathrm{\overrightarrow{A P},} he can see the top \mathrm{ B} of the tower with an angle of elevation \mathrm{ \alpha.} If  \mathrm{ d=\sqrt{7} h},  then \mathrm{ \tan \alpha} is equal to

Option: 1

\sqrt{5}-2


Option: 2

\sqrt{3}-1


Option: 3

\sqrt{7}-2


Option: 4

\sqrt{7}-\sqrt{3}


Answers (1)

best_answer

\mathrm{\tan 2 \alpha=\frac{h}{x}}\\

\mathrm{\text { and } \tan \alpha=\frac{2 h}{x+\sqrt{7} h}}\\

\mathrm{\tan \alpha=\frac{2 h}{h \cot 2 \alpha+\sqrt{7} h}}\\

\mathrm{\tan \alpha=\frac{2}{\frac{\left(1-\tan ^{2} \alpha\right)}{2 \tan \alpha}+\sqrt{7}}}\\

\mathrm{\text { Put } \tan \alpha=t\; \& \text { simplify }}\\

\mathrm{\Rightarrow \tan \alpha=\sqrt{7}-2}

Hence correct option is 3

Posted by

manish

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE