Get Answers to all your Questions

header-bg qa

The unit vector along \hat{i}+\hat{j} is

  • Option 1)

     \hat{K}

  • Option 2)

    \hat{i}+\hat{j}

  • Option 3)

    \frac{\left ( \hat{i}+\hat{j} \right ) }{\sqrt{2}}

  • Option 4)

    \frac{\left ( \hat{i}+\hat{j} \right ) }{2}

 

Answers (1)

best_answer

As we discussed in concept

Calculating position of vectors -

Magnitude: Its magnitude is the distance between the given point and its direction from the origin to that point.

\vec{r}= x\hat{i}+y\hat{j}+z\hat{k}

Magnitude : r= \sqrt{x^{2}+y^{2}+z^{2}}
 

- wherein

If\vec{A}= 3\hat{i}-4\hat{j}+2\hat{k}

Find its magnitude

r= \sqrt{x^{2}+y^{2}+z^{2}}

= \sqrt{(3)^{2}+(-4)^{2}+(2)^{2}}

= \sqrt{9+16+4}

a= \sqrt{29}

 

 \hat{r}=\frac{\hat{i}.\hat{j}}{\sqrt{1^{2}+1^{2}}}

\frac{(\hat{i}+\hat{j})}{\sqrt{2}}

 


Option 1)

 \hat{K}

Option is incorrect

Option 2)

\hat{i}+\hat{j}

Option is incorrect

Option 3)

\frac{\left ( \hat{i}+\hat{j} \right ) }{\sqrt{2}}

Option is correct

Option 4)

\frac{\left ( \hat{i}+\hat{j} \right ) }{2}

Option is incorrect

Posted by

Aadil

View full answer