Get Answers to all your Questions

header-bg qa

The angle of elevation of the top of a tower from a point A due north of it is \alpha and from a point B at a distance of 9 units due west of \mathrm{A \: is \cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)}. If the distance of the point B from the tower is 15 units, then \cot \alpha is equal to :

Option: 1

\frac{6}{5}


Option: 2

\frac{9}{5}


Option: 3

\frac{4}{3}


Option: 4

\frac{7}{3}


Answers (1)

best_answer

\text { Giren } \mathrm{O B=15}

\mathrm{\cos B =\frac{3}{\sqrt{13}} }


\mathrm{\tan B =\frac{h}{\sqrt{15}} }
\mathrm{\frac{2}{\sqrt{3}}=\frac{h}{15} }
\mathrm{h=10 }

\begin{gathered} \mathrm{O A^2+A B^2=225} \\ \mathrm{O A^2+81=225} \\ \mathrm{O A=12} \end{gathered}

\mathrm{\tan 2=\frac{10}{12} }\\ \mathrm{\cot \alpha=\frac{12}{10}=\frac{6}{5}}

 

Posted by

seema garhwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE