Get Answers to all your Questions

header-bg qa

A body of radius \mathrm{R} and mass \mathrm{M} is initally rolling on a level surface with speed \mathrm{\omega}. It then rolls up an inclined to a maximum height \mathrm{h}. If \mathrm{h=\frac{u^2}{g}}. The geometrical shape of the body is.
 

Option: 1

disc
 


Option: 2

Hollow cylinder
 


Option: 3

Sphere
 


Option: 4

None


Answers (1)

best_answer

\mathrm{K \cdot E \cdot=\frac{1}{2} m u^2\left(1+\frac{k^2}{R^2}\right)=m g h }

\mathrm{\frac{u^2}{2}\left[1+\frac{k^2}{R^2}\right]=g \cdot \frac{k^2}{5} }

\mathrm{1+\frac{k^2}{R^2}=2 }

\mathrm{\frac{k^2}{R^2}=1 }

\mathrm{k=R}

If radius of gyration is equal to radius. thaw geometrical shape is hollow ob cylinder.

Hence option 2 is correct.

Posted by

chirag

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks