Get Answers to all your Questions

header-bg qa

A mercury manometer consists of two unequal arms of equal cross-section 1 \mathrm{~cm}^{2} and lengths 100 \mathrm{~cm}$ and $50 \mathrm{~cm}. The two open ends are sealed with air in the tube at a pressure of 80 \mathrm{~cm} of mercury. Some amount of mercury is now introduced in the monometer through the stopcock connected to it. If mercury resis in the shorter tube to a length 10 \mathrm{~cm} in steady state, find the length of the mercury column risen in the longer tube.

Option: 1

-


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

 Let \mathrm{p}_{1}$ and $\mathrm{p}_{2} and be the pressures in centimetre of mercury in the two arms after introducing mercury in the tube. Suppose the mercury column rises in the second arm to l_{0} \mathrm{~cm}.


Using \mathrm{pV}= constant for the shorter arm,
(80 \mathrm{~cm})(50 \mathrm{~cm})=\mathrm{p}_{1}(50 \mathrm{~cm}-10 \mathrm{~cm})
or \, \mathrm{p}_{1}=100 \mathrm{~cm}\quad \ldots(i)

Using \mathrm{pV}=constant for the longer arm,
(80 \mathrm{~cm})(100 \mathrm{~cm})=\mathrm{p}_{2}\left(100-l_{0}\right) \mathrm{cm}\quad \ldots(ii)

From the figure,
\mathrm{p}_{1}=\mathrm{p}_{2}+\left(l_{0}-10\right) \mathrm{cm}.
Thus by (i),
100 \mathrm{~cm}=\mathrm{p}_{2}+\left(l_{0}-10\right) \mathrm{cm}.
or
\mathrm{p}_{2}=110 \mathrm{~cm}-l_{0} \mathrm{~cm}
Putting in (ii),
\begin{array}{ll} & \left(110-l_{0}\right)\left(100-l_{0}\right)=8000 \\ \text { or, } & l_{0}{ }^{2}-210 l_{0}+3000=0 \\ \text { or } & I_{0}=15.5 \end{array}

The required length is 15.5 \mathrm{~cm}.

Posted by

Sanket Gandhi

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks