Get Answers to all your Questions

header-bg qa

The potential energy of a particle of mass  14 Kg in motion along the  x-axis is given by of  U=8(1 - cos 12 x). the time period of the Particle for small oscillation  [\sin \theta=\theta]  is  \frac{\pi}{Q} \sec The value of  Q

 

Option: 1

4.54


Option: 2

2.31


Option: 3

5.47


Option: 4

6.29


Answers (1)

best_answer

U=8(1-\cos 12 x) \\

F=-\frac{d u}{d x}=-8[12 \sin 12 x] \\

F=-8 \times 12 \sin 12 x \\

F=-96\, \sin 12 x \\

F=-96 \times 12 x \\                         {[\because \sin \theta=\theta]} \\

F=1152 x \\

F=-1152 x \\

a=\frac{F}{m} \\

a=\frac{-1152 x}{14} \\

a=-82 \cdot 3\, x \\

\omega^2=82.3 \\

\omega=\sqrt{82.3}=9.072 \\

T=\frac{2 \pi}{\omega}=\frac{2 \pi}{9.072} \\

\text { or }=\frac{\pi}{\frac{9.072}{2}}=\frac{\pi}{4.54} \\

\text { or }=\frac{\pi}{4.54} \\

Q=4.54

 

Posted by

Anam Khan

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks