Get Answers to all your Questions

header-bg qa

A plane EM wave travelling in vacuum along z-direction is given by

E=E_{0}\sin (kz-\omega t)\hat{i}\; and \; B=B_{0}\sin (kz-\omega t)\hat{j}

a) evaluate \oint E.dl over the rectangular loop 1234 shown in the figure

b) evaluate \int B.ds over the surface bounded by loop 1234

c) use equation \oint E.dl=\frac{-d\phi _{B}}{dt} to prove \frac{E_{0}}{B_{0}}=c

d) by using a similar process and the equation

\oint B.dl=\mu _{0}I\epsilon _{0}\frac{-d\phi _{E}}{dt} prove that c=\frac{1}{\sqrt{\mu _{0}\epsilon _{0}}}

 

Answers (2)

a)

\oint \overrightarrow{E}.\overrightarrow{dl}=E_{0}h\left [ \sin (kz_{2}-\omega t)-\sin (kz_{1}-\omega t) \right ]

b)

\oint \overrightarrow{B}.\overrightarrow{ds}=-\frac{B_{0}h}{k}\left [ \cos (kz_{2}-\omega t)-\cos (kz_{1}-\omega t) \right ]

c) Substituting the above equations in the following equation we get

\oint E.dl=-\frac{d\phi _{B}}{dt}=-\frac{d}{dt}\oint B.ds

\\E_{0}h\left [ \sin (kz_{2}-\omega t)-\sin (kz_{1}-\omega t) \right ]=\frac{B_0hw}{k} [ \sin (kz_{2}-\omega t)-\sin (kz_{1}-\omega t)]\\

 

\frac{E_{0}}{B_{0}}=C

d)

\oint B.dl=\mu _{0}I\epsilon _{0}\frac{-d\phi _{E}}{dt}

\\B_0 h[\sin (kz_{2}-\omega t)-\sin (kz_{1}-\omega t)]=\frac{E_0h}{kw} [\sin (kz_{2}-\omega t)-\sin (kz_{1}-\omega t)]

\\B_0 h=\frac{E_0h}{kw}

We get

c=\frac{1}{\sqrt{\mu _{0}\varepsilon _{0}}}

Posted by

infoexpert23

View full answer

 [\sin (kz_{2}-\omega t)-\sin (kz_{1}-\omega t)] 

Posted by

Safeer PP

View full answer