Get Answers to all your Questions

header-bg qa

Calculate the stress developed inside a tooth cavity filled with copper when hot tea at temperature of 57^{\circ}C is drunk. You can take body temperature to be 37^{\circ}C and \alpha=1.7\times 10^{-5}, bulk modulus for copper =140 \times 10^9 N/m^{2}.

Answers (1)

Let \Delta T be the change in temperature, \Delta T = 57 - 37 = 20^{\circ}C

Let \alpha be linear expansion of body, \alpha = \frac{1.7 \times 10^{-5}}{K}

& ϒ be the cubical expansion =3\alpha =3\times 1.7 \times 10^{-5}

                                                 = \frac{5.1 \times 10^{-5}}{K}

Let V be the volume of the cavity and \Delta V be the increase in its volume which is a result of increase in temperature by \Delta T.

\Delta V = \gamma V. \Delta T

\frac{\Delta V}{V} = \gamma \Delta T

Now, we know that,

Thermal stress production = B x Volumetric strain

                                    =B.\frac{\Delta V}{V}

                                    =B.\gamma \Delta T

                                    = 140 \times 10^9 \times 5.1 \times 10^{-5} \times 20

                                    = 1.428 \times 10^{8} Nm^{-2}

Thus, the stress is 1.01 \times 10^{5} Nm^{-2}, viz., 10^{3} times of atmospheric pressure.

Posted by

infoexpert24

View full answer