Get Answers to all your Questions

header-bg qa

Factorize the following

(i)9x^{2}+4y^{2}+16z^{2}+12xy-16yz-24xz

(ii)25x^{2}+16y^{2}+4z^{2}-40xy+16yz-20xz

(iii)16x^{2}+4y^{2}+9z^{2}-16xy-12yz+24xz

Answers (1)

(i)(3x+2y-4z)(3x+2y-4z)

Solution

Given, 9x^{2}+4y^{2}+16z^{2}+12xy-16yz-24xz                                  

This can be written as:

(3x)^{2}+(2y)^{2}+(4z)^{2}+2(3x)(2y)+2(2y)(-4z)+2(3x)(-4z)            …(i)

We know that,           

(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca

Comparing equation (i) with RHS of above identity, we get:

a = 3x, b = 2y, c = -4z

So, we get:

(3x)^{2}+(2y)^{2}+(-4z)^{2}+2(3x)(2y)+2(2y)(-4z)+2(3x)(-4z)

=(3x+2y-4z)^{2}        

Hence the factorized form is (3x+2y-4z)(3x+2y-4z)

(ii)(-5x+4y+2z)(-5x+4y+2z)

Solution

Given, 25x^{2}+16y^{2}+4z^{2}-40xy+16yz-20xz                                  

This can be written as:

(-5x)^{2}+(4y)^{2}+(2z)^{2}+2(-5x)(4y)+2(4y)(2z)+2(-5x)(2z)            …(i)

We know that,           

(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca

Comparing equation (i) with RHS of above identity, we get:

a = -5x, b = 4y, c = 2z

So, we get:

(-5x)^{2}+(4y)^{2}+(2z)^{2}+2(-5x)(4y)+2(4y)(2z)+2(-5x)(2z)

=(-5x+4y+2z)^{2}=(-5x+4y+2z)(-5x+4y+2z)        

Hence the factorized form is (-5x+4y+2z)(-5x+4y+2z)

(iii)(4x-2y+3z)(4x-2y+3z)

Solution

Given, 16x^{2}+4y^{2}+9z^{2}-16xy-12yz+24xz                                  

This can be written as:

 (4x)^{2}+(-2y)^{2}+(3z)^{2}+2(4x)(-2y)+2(-2y)(3z)+2(4x)(3z)            …(i)

  We know that,           

  (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca

  Comparing equation (i) with RHS of above identity, we get:

  a = 4x, b = -2y, c = 3z

  So, we get:

  (4x)^{2}+(-2y)^{2}+(3z)^{2}+2(4x)(-2y)+2(-2y)(3z)+2(4x)(3z)

 =(4x-2y+3z)^{2}=(4x-2y+3z)(4x-2y+3z)        

 Hence the factorized form is (4x-2y+3z)(4x-2y+3z).

Posted by

infoexpert24

View full answer