Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.
Given: (1+x)18
Now, T(2r+3)+1 is the (2r + 4)th term
Thus, T(2r+3)+1 = 18C2r+3 (x)2r+3
Now, T(r-3)+1 is the (r-2)th term
Thus, T(r-3)+1 = 18Cr-3 xr-3
Now, it is given that the terms are equal in expansion,
Thus,
18C2r+3 = 18Cr-3
i.e., 2r + 3 + r – 3 = 18 …… (nCx = nCy gives x + y = n)
Thus, 3r = 18
Therefore, r = 6