Get Answers to all your Questions

header-bg qa

If \overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}} \text { and } \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}  find the unit vector in the direction of 6 \overrightarrow{\mathrm{b}}

 

Answers (1)

We have, \overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}} \text { and } \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}

(i). We need to find the unit vector in the direction of 6 \overrightarrow{\mathrm{b}} .

First, let us calculate 6 \overrightarrow{\mathrm{b}} .

As we have,

\overrightarrow{\mathrm{b}}=2 \hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}}

\\ \text{Multiply it by 6 on both sides.} $$\\ \Rightarrow 6 \overrightarrow{\mathrm{b}}=6(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})

We can easily multiply vector by a scalar by multiplying similar components, that is, vector’s magnitude by the scalar’s magnitude.

\Rightarrow 6 \overrightarrow{\mathrm{b}}=12 \hat{\imath}+6 \hat{\jmath}-12 \hat{\mathrm{k}}

We know that, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1.

To find a unit vector with the same direction as a given vector, we divide by the magnitude of the vector.

For finding unit vector, we have the formula:

6 \hat{\mathrm{b}}=\frac{6 \overrightarrow{\mathrm{b}}}{|6 \overrightarrow{\mathrm{b}}|}

Now we know the value of 6 \overrightarrow{\mathrm{b}} , so just substitute the value in the above equation.

\Rightarrow 6 \hat{\mathrm{b}}=\frac{12 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-12 \hat{\mathrm{k}}}{|12 \hat{\mathrm{l}}+6 \hat{\mathrm{j}}-12 \hat{\mathrm{k}}|} \\ \text { Here, }|12 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-12 \hat{\mathrm{k}}|=\sqrt{12^{2}+6^{2}+(-12)^{2}} \\ \Rightarrow 6 \hat{\mathrm{b}}=\frac{12 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-12 \hat{\mathrm{k}}}{\sqrt{144+36+144}} \\ \Rightarrow 6 \hat{\mathrm{b}}=\frac{12 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-12 \hat{\mathrm{k}}}{\sqrt{324}}

\\ \begin{aligned} &\Rightarrow 6 \hat{\mathrm{b}}=\frac{12 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-12 \hat{\mathrm{k}}}{18}\\ &\text { Let us simplify. }\\ &\Rightarrow 6 \hat{\mathrm{b}}=\frac{6(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})}{18}\\ &\Rightarrow 6 \hat{\mathrm{b}}=\frac{2 \hat{\mathrm{\imath}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}}{3} \end{aligned}

Thus, unit vector in the direction of  6 \overrightarrow{\mathrm{b}} is \frac{2 \hat{\mathrm{\imath}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}}{3}

Posted by

infoexpert22

View full answer