Get Answers to all your Questions

header-bg qa

The number of vectors of unit length perpendicular to the vectors \vec{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}\text { and } \vec{\mathrm{b}}=\hat{\mathrm{j}}+\hat{\mathrm{k}}  is
A. one
B. two
C. three
D. infinite

Answers (1)

Answer :(B)

Given that ,   \vec{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}\text { and } \vec{\mathrm{b}}=\hat{\mathrm{j}}+\hat{\mathrm{k}} 

Now, a vector which is perpendicular to both \vec{a} \text{ and } \vec{b} is given by

|\vec{a} \times \vec{b}| = \sqrt{(-1)^2 + (-2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3

\\ =\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}=\frac{-\hat{i}-2 \hat{\jmath}+2 \hat{k}}{3}=\frac{-1}{3} \hat{\imath}-\frac{2}{3} \hat{\jmath}+\frac{2}{3} k$\\ There are two perpendicular directions to any plane. Thus, another unit vector perpendicular to $\vec{a}$ and $\vec{b}$ is given $b y-\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}=\frac{\vec{b} \times \vec{a}}{|\vec{b} \times \vec{a}|}$\\ $\Rightarrow \frac{\vec{b} \times \vec{a}}{|\vec{b} \times \vec{a}|}=\frac{1}{3} \hat{\imath}+\frac{2}{3} \hat{\jmath}-\frac{2}{3} k

Hence, there are two unit length perpendicular to the \vec{a} \text{ and } \vec{b} .

Posted by

infoexpert22

View full answer