Get Answers to all your Questions

header-bg qa

If p(x)=x^{2}-4x+3 evaluate : p(2)-p(-1)+p\left ( \frac{1}{2} \right )

Answers (2)

-\frac{31}{4}

Solution

Given polynomial is p(x)=x^{2}-4x+3

Put x=2  we get
\\p(2)=(2)^{2}-4(2)+3\\ =4-8+3\\ =-1

Put x=-1 we get
\\p(-1)=(-1)^{2}-4(-1)+3\\ =1+4+3\\ =8

Put x=\frac{1}{2}  we get
\\p(\frac{1}{2})=(\frac{1}{2})^{2}-4(\frac{1}{2})+3\\ =\frac{1}{4}-2+3\\ =\frac{1}{4}+1\\=\frac{1+4}{4}\\=\frac{5}{4}
Now p(2)-p(-1)+p\left (\frac{1}{2} \right ) is

\\=(-1)-8+\frac{5}{4}\\ =-9+\frac{5}{4}\\ =\frac{-36+5}{4}\\=-\frac{31}{4}

Hence the answer is -\frac{31}{4}.

 

Posted by

infoexpert24

View full answer

Given,

p(x)=x²-4x+3

p(2)=2²-4(2)+3

p(2)=4-8+3

p(2)=-1

p(-1)=(-1)²-4(-1)+3

p(-1)=1+4+3

p(-1)=8

p(1/2)=(1/2)²-4(1/2)+3

p(1/2)=1/4-2+3

p(1/2)=5/4

now evaluation of p(2)-p(-1)+p(1/2) is

=-1-8+5/4

=-31/4.

Posted by

NIHARIKA PERIMILLA

View full answer