Get Answers to all your Questions

header-bg qa

The perimeter of a triangle is 50 cm. One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.

Answers (1)

Solution

Let the smaller side of the triangle be x cm

Let BC = x cm

According to the question,

One side of a triangle is 4 cm longer than the smaller side

Let this side be AC = x + 4

Also, the third side is 6 cm less than twice the smaller side

Let this side be AB = (2x - 6) cm

Given the perimeter of \DeltaABC = 50 cm

x + x + 4 + 2x - 6 = 50

4x - 2 = 50

4x = 50+2

4x = 52

x = \frac{52}{4}

x = 13 \; cm

So\; the\; side \; AC = (x + 4) = (13 + 4) = 17\; cm

Side\; AB = \left ( 2x-6 \right )\; cm= \left ( 26-6 \right )\; cm= 20\; cm

Now in \DeltaABC, a = 13 cm, b = 17 cm, and c = 20 cm

Using Heron’s formula

S= \frac{a+b+c}{2}= \frac{13+17+20}{2}= \frac{50}{2}= 25\; cm

Area \; of\; \Delta ABC =\sqrt{S\left ( S-a \right )\left ( S-b \right )\left ( S-c \right )}

=\sqrt{25\left ( 25-13 \right )\left ( 25-17 \right )\left ( 25-20 \right )}

=\sqrt{25\times 12\times 8\times 5}

=\sqrt{5\times 5\times 2\times 2\times 3\times 2\times 2\times 2\times 5}

=\sqrt{5\times 5\times 5\times 2\times 2\times 2\times 2\times 2\times 3}

= 5\times 2\times 2\sqrt{30}

Area \; of \; \Delta ABC = 20\sqrt{30}\; cm^{2}

Hence\; the \; area\; of\; triangle\; is \; 20\sqrt{30}\; cm^{2}

Posted by

infoexpert21

View full answer