Get Answers to all your Questions

header-bg qa

A particle is projected in air at an angle \beta to a surface which itself is inclined at an angle \alpha to the horizontal.

a) find an expression of range on the plane surface

b) time of flight

c) \beta at which range will be maximum

 

Answers (1)

a) expression of range on the plane surface

Now, a_{y}=-g\; \cos \alpha and a_{x}= g\; \sin \alpha

Y=0 at O and P,

So

U_{y}=v\; \sin \beta where t = T

We calculate Time of Flight Part (b) before Part (a)

b) motion of a particle along Y axis

s=ut+\frac{1}{2}gt^{2}

s=0,u=v\; \sin \beta , g=a=-g\; \cos \alpha ,t=T

0=v\; \sin \beta .T+\frac{1}{2}(-g\; \cos \alpha )T^{2}

T[v\; \sin \beta -T.\frac{g}{2}\cos \alpha ]=0

\frac{Tg}{2}.\cos \alpha =v\sin \beta

So, T=2v\; \sin \beta /g.\cos \alpha

a) Now we continue the part a

T=2v\; \sin \beta /g.\cos \alpha

s=ut+\frac{1}{2}gt^{2}

L=v\; \cos \beta (T)+\frac{1}{2}(-g\; \sin \alpha )T^{2}

L=2\; v^{2}\; \sin \beta[\cos \beta \cos \alpha -\sin \beta \sin \alpha ]/g \cos ^{2}\alpha

L=2\; v^{2}\; \sin \beta \times \cos [\alpha +\beta ]/g \cos ^{2}\alpha

c) on the axis X, L will be maximum when \sin \beta \cos [\alpha +\beta ] will be maximum

let z=\sin \beta \cos [\alpha +\beta ]

=\sin \beta [\cos \beta \cos \alpha -\sin \beta \sin \alpha ]

=\frac{1}{2}[\cos \alpha\; 2\sin\; \beta +\sin \alpha \cos \; 2\; \beta-\sin \alpha ]

=\frac{1}{2}[\sin(2\beta +\alpha )-\sin\; \alpha ]

In order to make Z maximum, we put [\sin(2\beta +\alpha )-\sin\; \alpha ]=1

Opening the brackets, we get (2\beta +\alpha )=90

2\beta =90-\alpha

\beta =45-\frac{\alpha }{2}radian

 

Posted by

infoexpert23

View full answer