Get Answers to all your Questions

header-bg qa

Factorize :

(i) 2x^{3}-3x^{2}-17x+30

(ii) x^{3}-6x^{2}+11x-6

(iii) x^{3}+x^{2}-4x-4

(iv) 3x^{3}-x^{2}-3x+1

Answers (1)

(i) (x-2)(x+3)(2x-5)

Solution

Let p(x)= 2x^{3}-3x^{2}-17x+30

By trial, we find that p(2)=0

p(2)= 2(2)^{3}-3(2)^{2}-17(2)+30=16-12-34+30=0

Hence x-2  is a factor of p(x)
           

\\2x^{3}-3x^{2}-17x+30=\left ( x-2 \right )\left ( 2x^{2}+x-15 \right )\\ =(x-2)(2x^{2}+6x-5x-15)\\ =(x-2)(2x(x+3)-5(x+3))\\ 2x^{3}-3x^{2}-17x+30= (x-2)(x+3)(2x-5)

Hence the factorized form is (x-2)(x+3)(2x-5)

(ii) (x-1)(x-2)(x-3)

Solution

Let p(x)= x^{3}-6x^{2}+11x-6

By trial, we find that p(1)=0

p(1)=1-6+11-6=0

Hence x-1  is a factor of p(x)
           

\\p(x)=(x-1)(x^{2}-5x+6)\\ =(x-1)(x^{2}-3x-2x+6))\\ =(x-1)(x(x-3)-2(x-3))\\= (x-1)(x-2)(x-3)

Hence the factorized form is (x-1)(x-2)(x-3)

(iii) (x+1)(x-2)(x+2)

Solution

Let p(x)=x^{3}+x^{2}-4x-4

By trial, we find that p(-1)=0

p(-1)=-1+1+4-4=0

Hence x+1  is a factor of p(x)
           

\\p(x)=(x+1)(x^{2}-4)\\ =(x+1)(x^{2}-(2)^{2}))\\ =(x+1)(x-2)(x+2)\; \; \; \; (using a^{2}-b^{2}=(a-b)(a+b))\\= (x+1)(x-2)(x+2)

Hence the factorized form is (x+1)(x-2)(x+2)

(iv) (x-1)(x+1)(3x-1)

Solution

Let p(x)=3x^{3}-x^{2}-3x-1

 By trial, we find that p(1)=0

\\p(1)=3(1)^{3}-(1)^{2}+3(1)+1\\=3-1-3+1=0

Hence x-1  is a factor of p(x)
           

\\p(x)=(x-1)(3x^{3}+2x-1)\\ =(x-1)(3x^{2}+3x-x-1)\\ =(x-1)(3x(x+1)-1(x+1)) \\= (x-1)(x+1)(3x-1)

Hence the factorized form is (x-1)(x+1)(3x-1).

Posted by

infoexpert24

View full answer