If the curve and , cut orthogonally at (1, 1), then the value of a is:
A. 1
B. 0
C. – 6
D. 6
Given the fact that curve and , cut orthogonally at (1, 1)
Differentiate on both sides with x and get
Apply sum rule and also 0 is the derivative of the constant, so
Apply power rule and get
Putting (1,1)
Differentiate on both sides with x and get
Apply power rule and get
Putting (1,1)
Both curves cut orthogonally at (1,1), 50
So from (i) and (ii), we get
Hence when the curves cut orthogonally at (1, 1), then the value of a is 6.
So the correct answer is option D.