Get Answers to all your Questions

header-bg qa

Prove that the curves xy = 4  and x^2+y^2 = 8 touch each other.

Answers (1)

Given: two curves xy = 4  and x^2+y^2 = 8

To prove: two curves meet each other at a point

Explanation:

Now given  x^2+y^2 = 8

Differentiating this with respect to x, we get

\begin{aligned} &\frac{\mathrm{d}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}{\mathrm{d} \mathrm{x}}=\frac{\mathrm{d}(8)}{\mathrm{dx}}\\ &\text { By using the sum rule of differentiation, we get }\\ &\Rightarrow \frac{\mathrm{d}\left(\mathrm{x}^{2}\right)}{\mathrm{dx}}+\frac{\mathrm{d}\left(\mathrm{y}^{2}\right)}{\mathrm{dx}}=0\\ &\Rightarrow 2 x+2 y \frac{d y}{d x}=0\\ &\Rightarrow 2 x=-2 y \frac{d y}{d x}\\ &\Rightarrow \frac{d y}{d x}=-\frac{x}{y}=m_{1} \ldots \ldots(i) \end{aligned}

 

Also given xy = 4

Differentiating this with respect to x, we get
\frac{\mathrm{d}(\mathrm{xy})}{\mathrm{dx}}=\frac{\mathrm{d}(4)}{\mathrm{dx}}
The using the product rule of differentiation, we get

\Rightarrow\left(x \frac{d y}{d x}+y \frac{d x}{d x}\right)=0$ $\Rightarrow x \frac{d y}{d x}+y=0
\\\Rightarrow \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}=-\mathrm{y}$\\ $\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{\mathrm{y}}{\mathrm{x}}=\mathrm{m}_{2} \ldots \ldots (ii)
But the touch of 2 curves is possible if
\mathrm{m}_{1}=\mathrm{m}_{2}

Now substituting the values from equation (ii) and equation (ii), we get

\\-\frac{y}{x}=-\frac{x}{y}$\\ $\Rightarrow \mathrm{y}^{2}=\mathrm{x}^{2}$\\ $\Rightarrow \mathrm{x}=\mathrm{y}
Now substituting x=y$ in $x^{2}+y^{2}=8,$ we get $y^{2}+y^{2}=8
\\ \Rightarrow 2 \mathrm{y}^{2}=8$ \\$\Rightarrow y^{2}=4$ \\$\Rightarrow y=\pm 2
When y=2$ $x y=4$ becomes $x(2)=4 \Rightarrow x=2
when y=-2$ $x y=4$ becomes $$ x(-2)=4 \Rightarrow x=-2

Therefore, (2,2) and (-2, -2) is the intersection point of the two curve

Substituting these points of intersection equation (i) and equation (ii), we get

For (2,2),

\\ \mathrm{m}_{1}=-\frac{\mathrm{x}}{\mathrm{y}}=-\frac{2}{2}=-1 \\ \mathrm{~m}_{2}=-\frac{\mathrm{y}}{\mathrm{x}}=-\frac{2}{2}=-1 \\ \therefore \mathrm{m}_{1}=\mathrm{m}_{2} \\ \text { For }(-2,-2) \\ \mathrm{m}_{1}=-\frac{\mathrm{x}}{\mathrm{y}}=-\frac{-2}{-2}=-1 \\ \mathrm{~m}_{2}=-\frac{\mathrm{y}}{\mathrm{x}}=-\frac{-2}{-2}=-1 \\ \therefore \mathrm{m}_{1}=\mathrm{m}_{2}

Thus, the condition for both curves to touch is possible if they have the same slope

Hence the two given curves touch each other.

Hence proved

Posted by

infoexpert22

View full answer