x and y are the sides of two squares such that . Find the rate of change of the area of the second square with respect to the area of the first square.
Given: two squares of sides x and y, such that
To find: The rate of change of area of both the squares with respect to each other
Explanation: Take and as the area of first and 2nd square respectively
Thus, the area of the 1st square will be
Differentiating the equation with respect to time, we get
And the area of the second square is
But given,
Now substituting the known value in equation (ii),
After differentiating equation (iii) with respect to time it results into,
Apply the power rule of differentiation to get,
Applying the sum rule of differentiation, we get
Since we need to find the rate of change of area of both the squares with respect to each other, which is
Substituting the known values from equation (i) and (iv), we get
By cancelling the like terms, we get