The slope of tangent to the curve at the point (2, -1) is:
A.
B.
C.
D.
Curve of the given equation is
With respect to t, while differentiating on both sides, we get
After application of the sum rule of differentiation, we get
Constant's derivative is 0, so above equation becomes
Power Rule application leads to
With respect to t, we differentiate on both side and get
Sum Rule application leads to
The Constant's derivative is 0, so the equation becomes
Applying power rule
We know,
Substitute values from equation (i) and (ii)
The point through which the curve passes is (2,-1), now, substitute the same and get
Split the middle term
Take 2 as common
Split the middle term again
In equation (iii) and (iv), 2 is common
So, t=2
So, the slope of the tangent at t=2 is as follows
Therefore, the slope of tangent at the point (2,-1) is
So, the correct answer is option B