Find the value(s) of p in for the following pair of equations:
(i) 3x – y – 5 = 0 and 6x – 2y – p = 0, if the lines represented by these equations are parallel.
(ii) – x + py = 1 and px – y = 1,if the pair of equations has no solution.
(iii) – 3x + 5y = 7 and 2px – 3y = 1,
if the lines represented by these equations are intersecting at a unique point.
(iv) 2x + 3y – 5 = 0 and px– 6y – 8 = 0,if the pair of equations has a unique solution.
(v) 2x + 3y = 7 and 2px + py = 28 – qy,if the pair of equations have infinitely many solutions.
(i)Solution:
In equation 3x – y – 5 = 0
a1 = 3, b1 = –1, c1 = –5
In equation 6x – 2y – p = 0
a2 = 6, b2 = –2, c2 = –p
If the lines are parallel
Any real value of p except 10.
(ii)Solution:
Here the equations are
–x + py = 1, px – y = 1
In equation
–x + py = 1
a1 = –1, b1 = p, c1 = –1
In equation
px – y = 1
a2 = p, b2 = –1, c2 = –1
For no solution
= 1
p = ± 1
p = + 1 ( because if p = –1 then )
(iii)Solution:
Here the equation are –3x + 5y = 7, 2px – 3y = 1
In equation –3x + 5y = 7
a1 = –3, b1 = 5, c1 = –7
In equation 2px – 3y = 1
a2 = 2p, b2 = –3, c2 = –1
For unique solution
Hence p can have any real value for unique solution except 0.9
(iv)Solution:
Here the equation are 2x + 3y – 5 = 0
px – 6y –8 = 0
In equation 2x + 3y – 5 = 0
a1 = 2, b1 = 3, c1 = –5
In equation px – 6y – 8 = 0
a2 = p, b2 = –6, c2 = –8
For unique solution
Hence the equations have unique solution for every real value of p except –4.
(v)Solution:
Here the given equations are 2x + 3y = 7
a1 = 2, b1 = 3, c1 = –7
In equation 2px + py = 28 – qy
2px + py + qy = 28
2px + y(p + q) = 28
a2 = 2p, b2 = p + q, c2 = –28
For infinite many solution
4 = p
p = 4
p + q = 12
Put p =4
q=12-4
q=8
For infinitely many solutions, p = 4, q = 8