Get Answers to all your Questions

header-bg qa

Uniform cube of mass m and side a is placed in a frictionless horizontal surface. A vertical force F is applied to the edge as shown in the figure.

Match the following

a) \frac{mg}{4}<F<\frac{mg}{2} i) cube will move up
b) F>\frac{mg}{2} ii) cube will not exhibit motion
c) F>mg iii) cube will begin to rotate and slip at A
d) F=\frac{mg}{4} iv)normal reaction effectively at \frac{a}{3} from A, no motion

 

Answers (1)

(a) – (ii), (b) – (iii), (c) – (i), (d) – (iv)

Let \tau _{z}  be the moment of force due to F at A and \tau '_{z} be the moment of force due to mg at A

    \tau _{z} is anti-clockwise whereas is \tau '_{z} clockwise

\tau '_{z}=\frac{mga}{2} and \tau _{z}=ax\; \vec{F}

a\times\; \vec{F}=\frac{mga}{2}

\vec{F}=\frac{mg}{2}

Cube will rotate only if \tau _{z}>\tau '_{z}

                                   \frac{Fa}{2}>\frac{mg}{2}

                                     F>\frac{mg}{2}

If normal reaction force acts effectively at \frac{a}{3} from A

\tau '_{z}=mg \; \frac{a}{3}

\tau _{z}=F.a

\tau _{z}=\tau '_{z}

implies

F=\frac{mg}{3}>\frac{mg}{4}

So due to F = \frac{mg}{4}block will not moing

Posted by

infoexpert23

View full answer