Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 11 Higher Order Derivatives Exercise Multiple Choice Question question 16

Answers (1)

Answer:

                (a)

Hint:

We must have known about the derivative of trigonometric function like  \sin^{-1}x .

Given:

                y=\left(\sin ^{-1} x\right)^{2}

Explanation:

                y=\left(\sin ^{-1} x\right)^{2}

Differentiate with respect to x

                \frac{d y}{d x}=2 \sin ^{-1} x \times \frac{1}{\sqrt{1-x^{2}}}

Again differentiate with respect to x

                \frac{d^{2} y}{d x^{2}}=\frac{2 \frac{1}{\sqrt{1-x^{2}}} \times \sqrt{1-x^{2}}}{\left(1-x^{2}\right)}-\sin ^{-1}\left(\frac{x-2 x}{2 \sqrt{1-x^{2}}}\right)

                \left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=2\left[1+\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}\right] \\

                \left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-\frac{2 x \sin ^{-1} x}{\sqrt{1-x^{2}}}=2 \\

                \begin{gathered} \left(1-x^{2}\right) y_{2}=2+x y_{1} \end{gathered}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads