Get Answers to all your Questions

header-bg qa

explain solution rd sharma class 12 chapter 14 Mean Value Theoram exercise multiple choice question 8 maths

Answers (1)

best_answer

Answer:

Option (c)

Hint:

You must know about Rolle’s Theorem.

Given: f(x)=\frac{x(x+1)}{e^{x}}defined on [ -1, 0]

Solution:

f(x)=\frac{x(x+1)}{e^{x}}

\Rightarrow \; \; \; \; \; f(x)=\frac{x^{2}+x}{e^{x}}

\Rightarrow \; \; \; \; \; f^{'}(x)=\frac{e^{x}\left ( 2x+1 \right )-\left ( x^{2}+x \right )\left ( e^{x} \right )}{e^{2x}}

\Rightarrow \; \; \; \; \; f^{'}(x)=\frac{\left ( 2x+1 \right )-\left ( x^{2}+x \right )}{e^{x}}

\Rightarrow \; \; \; \; \; f^{'}(c)=\frac{\left ( 2c+1 \right )-\left ( c^{2}+c \right )}{e^{c}}

Using Rolle’s Theorem,

              f^{'}(c)=0

\Rightarrow \; \; \; \; \; \frac{\left ( 2c+1 \right )-\left ( c^{2}+c \right )}{e^{c}}=0

\Rightarrow \; \; \; \; \; 2c+1-c^{2}-c=0

\Rightarrow \; \; \; \; \; c^{2}+c+1=0

\Rightarrow \; \; \; \; \; c^{2}-c-1=0

\Rightarrow \; \; \; \; \; c=\frac{-(-1)\pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}                          \left [ \because c=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a} \right ]

\Rightarrow \; \; \; \; \; c=\frac{1\pm \sqrt{1+4}}{2}

\Rightarrow \; \; \; \; \; c=\frac{1\pm \sqrt{5}}{2}

but \; \; \; \; \; c=\frac{1- \sqrt{5}}{2}\in \left [ -1,0 \right ]

Hence option (c) is correct.

Posted by

infoexpert26

View full answer
CUET Prep