Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma math  class 12 chapter Mean value theorem exercise 14.1 question 3 sub question (xviii)

Answers (1)

Answer:

               c=\cos ^{-1}\left(\frac{-1 \pm \sqrt{33}}{-8}\right)

Hint:

               f(0)=f(\pi), so there exists atc \in(0, \pi)such thatf^{\prime}(c)=0

Given:

               f(x)=\sin x-\sin 2 x onc \in[0, \pi]

Explanation:

f(x)=\sin x-\sin 2 x onc \in[0, \pi]

We know that sine function is continuous and differentiable on R.

Let’s find the values of the function at an extreme

\\ \Rightarrow \quad f(0)=\sin (0)-\sin 2(0)\\\\ \Rightarrow \quad f(0)=0-\sin (0)\\\\ \Rightarrow \quad f(0)=0\\\\ \Rightarrow \quad f(\pi)=\sin (\pi)-\sin 2(\pi)\\\\ \Rightarrow \quad f(\pi)=0-\sin (2 \pi)\\\\ \Rightarrow \quad f(\pi)=0

We havef(0)=f(\pi) , so there exists atc \in(0, \pi) , such thatf^{\prime}(c)=0 

Let’s find the derivative of f(x) 

\Rightarrow \quad f^{\prime}(x)=\frac{d(\sin x-\sin 2 x)}{d x}\\\\ \Rightarrow f^{\prime}(x)=\cos x-\cos 2 x \frac{d(2 x)}{d x} \ \ \ \ \ \left[\because \frac{d(\sin x)}{d x}=\cos x\right]\\\\ \Rightarrow \quad f^{\prime}(x)=\cos x-2 \cos 2 x\\\\ \Rightarrow \quad f^{\prime}(x)=\cos x-2\left(2 \cos ^{2} x-1\right) \ \ \ \ \left[\because \cos 2 x=2 \cos ^{2} x-1\right]\\\\ \Rightarrow \quad f^{\prime}(x)=\cos x-4 \cos ^{2} x+2

We havef' (c) = 0,

\Rightarrow \quad \cos c-4 \cos ^{2} c+2=0\\\\ \cos c=\frac{-1 \pm \sqrt{(1)^{2}-(4 \times-4 \times 2)}}{2 \times-4}\\\\ \Rightarrow \quad \cos c=\frac{-1 \pm \sqrt{1+32}}{-8} \\\\ \Rightarrow c=\cos ^{-1}\left(\frac{-1 \pm \sqrt{33}}{-8}\right)so there exists atc \in (0, \pi )

Hence Rolle’s Theorem is verified.

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads