Get Answers to all your Questions

header-bg qa

Explain solution rd sharma class 12 chapter 16 Increasing and decreasing function exercise multiple choice question, question 32

Answers (1)

 1<x<3, Option (a)

Hint: Take a derivative of given equation

Given: y=x(x-3)^{2} decreases for the values

Solution: We have, y=x(x-3)^{2}

                                    \begin{aligned} &y=x\left(x^{2}-6 x+9\right) \\ &y=x^{3}-6 x^{2}+9 x \end{aligned}

                                     \begin{aligned} \frac{\mathrm{dy}}{\mathrm{dx}} &=3 \mathrm{x}^{2}-12 \mathrm{x}+9 \\ \frac{\mathrm{dy}}{\mathrm{dx}} &=3\left(\mathrm{x}^{2}-4 \mathrm{x}+3\right) \\ &=3(\mathrm{x}-3)(\mathrm{x}-1) \end{aligned}

Y = f(x) decreases when \begin{aligned} \frac{\mathrm{dy}}{\mathrm{dx}}<0 \end{aligned}

The sign scheme of \begin{aligned} \frac{\mathrm{dy}}{\mathrm{dx}} \end{aligned} is shown,

                

               ∴ f’(x) =                                  

From the sign scheme \begin{aligned} \frac{\mathrm{dy}}{\mathrm{dx}}<0 \end{aligned}

               For x\epsilon (1,3)

               y=x(x-3)^{2}  decreases when x\epsilon 1<x<3

 

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads