Get Answers to all your Questions

header-bg qa

Explain solution rd sharma class 12 chapter 16 Increasing and decreasing function exercise multiple choice question, question 34

Answers (1)

\cos x , Option (c)

Hints: Check all the options and choose is satisfies

Given: Function is decreasing in \left ( 0,\frac{\pi}{2} \right )

Solution:

Option (A)

     \begin{aligned} &f(x)=\sin 2 x \\ &f^{\prime}(x)=2 \cos 2 x \end{aligned}          

f(x) increases from ‘0’ to ‘1’ in \left ( 0,\frac{\pi}{2} \right )

Option (B)

               \begin{aligned} &f(x)=\tan x \\ &f^{\prime}(x)=\sec ^{2} x \end{aligned}

In interval \left ( 0,\frac{\pi}{2} \right )f^{\prime}(x)=-\sin x<0

f(x)=\cos x is strictly increasing in interval \left ( 0,\frac{\pi}{2} \right )

Option (C)

               \begin{aligned} &f(x)=\cos x \\ &f^{\prime}(x)=-\sin x \end{aligned}

In interval \left(0, \frac{\pi}{2}\right), f^{\prime}(x)=-\sin x<0

f(x)=\cos x  is strictly decreasing in \left ( 0,\frac{\pi}{2} \right )

Option (D)

               \begin{aligned} &f(x)=\cos 3 x \\ &f^{\prime}(x)=-3 \sin 3 x \end{aligned}

Now,

\begin{aligned} &f^{\prime}(x)=0 \\ &\sin 3 x=0 \\ &3 x=\pi \end{aligned}

As x\epsilon \left ( 0,\frac{\pi}{2} \right )

x=\frac{\pi}{3}

f(x)=\cos 3 x is decreases only when 3 x \in\left(0, \frac{\pi}{2}\right)

And x \in\left(0, \frac{\pi}{6}\right)

Therefore, Option (C) =cos x satisfies because  f(x)=\cos x  is strictly decreasing in \left ( 0,\frac{\pi}{2} \right )

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads