Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Higher Order Derivatives exercise 11.1 question 39

Answers (1)

Answer:

Proved

Hint:

You must know the derivative of sin and logarithm function

Given:

y=\sin (\log x) , \text { prove } x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0

Solution:

y=\sin (\log x)

        \begin{aligned} &\frac{d y}{d x}=\cos (\log x) \times \frac{1}{x}\\ &=\frac{\cos (\log x)}{x}\\ &\text { Again differentiating }\\ &\frac{d^{2} y}{d x^{2}}=\frac{x\left[-\sin (\log x) \times \frac{1}{x}\right]-\cos (\log x)}{x^{2}}\\ &=\frac{-\cos (\log x)-\sin (\log x)}{x^{2}} \end{aligned}

        \begin{aligned} &\text { Now, }\\ &\text { LHS }=x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y\\ &=\frac{x^{2}\{-\cos (\log x)-\sin (\log x)\}}{x^{2}}+\frac{x \cos (\log x)}{x}+\sin (\log x)\\ &=0=\mathrm{RHS} \end{aligned}

Posted by

infoexpert25

View full answer
CUET Prep