Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 11 Higher Order Derivatives Exercise Multiple Choice Questions Maths Textbook Solution Question 13

Answers (1)

Answer:

                (a)

Hint:

We must know about the derivative of x

Given:

                x=2 a t, y=a t^{2} \\ , where  a  is constant.

Explanation:

                x=2 a t, y=a t^{2} \\

                \frac{d x}{d t}=2 a, \frac{d y}{d t}=2 a t \\

                \begin{aligned} &\frac{d y}{\frac{d t}{d x}}{d t}=\frac{2 a t}{2 a} \end{aligned}

                =t \\

                \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) \\

                \begin{aligned} & &\frac{d^{2} y}{d x^{2}}=\frac{d}{d t}\left(\frac{d y}{d x}\right) \frac{d t}{d x} \end{aligned}

                =\frac{d}{d t}(t) \frac{d t}{d x} \\

                =1\left(\frac{1}{2 a}\right) \\

                \begin{aligned} &=\frac{1}{2 a} \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads