Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 16 Increasing and Decreasing Function Excercise Very Short Answer type Question 12 Maths Textbook Solution

Answers (1)

Answer:

The interval in which the function increasing is  \left [ 0,\frac{\pi }{4} \right ]

Hint:

If  f(x) is increasing, then  f'(x)>0

Given:

                f(x)=\sin x+\cos x

Explanation:

It is given that,

                f(x)=\sin x+\cos x

\Rightarrow         f'(x)=\cos x-\sin x

Now,    \cos x-\sin x>0  as   f(x)  is increasing

\Rightarrow         \cos x>\sin x

\Rightarrow         \tan x<1

\therefore           x\epsilon \left [ 0,\frac{\pi }{4} \right ]

The interval in which the function increasing is  \left [ 0,\frac{\pi }{4} \right ]

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads