Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 11 Higher Order Derivatives Exercise Multiple Choice Question question 21

Answers (1)

Answer:               (c)

Hint:

We must know about the derivative of trigonometric function.

Given:

                x=f(t) \cos t-f^{\prime}(t) \sin t \\

                y=f(t) \sin t-f^{\prime}(t) \cos t \\

Explanation:

                x=f(t) \cos t-f^{\prime}(t) \sin t \\

                y=f(t) \sin t-f^{\prime}(t) \cos t \\

                \frac{d x}{d t}=f^{\prime}(t) \cos t-f(t) \sin t-f^{\prime \prime}(t) \sin t-f^{\prime}(t) \cos t \\

                \begin{aligned} & &\frac{d x}{d t}=-f(t) \sin t-f^{\prime \prime}(t) \sin t \end{aligned}

                \frac{d x}{d t}=-\sin t\left[f(t)+f^{\prime \prime}(t)\right] \\

                \frac{d y}{d t}=f^{\prime}(t) \sin t-f(t) \cos t-f^{\prime \prime}(t) \cos t-f^{\prime}(t) \sin t \\

                \begin{aligned} &\frac{d y}{d t}=-f(t) \cos t-f^{\prime \prime}(t) \cos t \end{aligned}

                \frac{d y}{d t}=-\cos t\left[f(t)+f^{\prime \prime}(t)\right]

                \\ \left(\frac{d x}{d t}\right)^{2}=\left[-\sin t\left[f(t)+f^{\prime \prime}(t)\right]\right]^{2} \\

                \begin{aligned} & &\left(\frac{d y}{d t}\right)^{2}=\left[-\cos t\left[f(t)+f^{\prime \prime}(t)\right]\right]^{2} \end{aligned}

                \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=(\sin t)^{2}\left[f(t)+f^{\prime \prime}(t)\right]^{2}+(\cos t)^{2}\left[f(t)+f^{\prime \prime}(t)\right]^{2} \\

                \begin{aligned} & &\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left[f(t)+f^{\prime \prime}(t)\right]^{2}\left[(\sin t)^{2}+(\cos t)^{2}\right] \end{aligned}

                =\left[f(t)+f^{\prime \prime}(t)\right]^{2}                                                         \left[\because(\sin t)^{2}+(\cos t)^{2}=1\right]

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads