Get Answers to all your Questions

header-bg qa

provide solution for rd sharma maths class 12 chapter 14 Mean Value Theoram exercise  multiple choice question 10

 

Answers (1)

Answer:

Option (a)

Hint:

Differentiate the given function and then apply Rolle’s Theorem.

Given:

f(x)=x^{3}-3x,x\in \left [ 0,\sqrt{3} \right ]

Solution:

            f(x)=x^{3}-3x,x\in \left [ 0,\sqrt{3} \right ]

            f(x)=x^{3}-3x

\Rightarrow \; \; \; \; \; f^{'}(x)=3x^{2}-3

\Rightarrow \; \; \; \; \; f^{'}(c)=3c^{2}-3

Applying Rolle’s Theorem,

\Rightarrow \; \; \; \; \; f^{'}(c)=0

\Rightarrow \; \; \; \; \; 3c^{2}-3=0

\Rightarrow \; \; \; \; \; 3c^{2}=3

\Rightarrow \; \; \; \; \; c^{2}=1

\Rightarrow \; \; \; \; \; c=\pm 1

\Rightarrow \; \; \; \; \; c=1                                   \left [ \because c\in \left [ 0,\sqrt{3} \right ] \right ]

Hence option (a) is correct.

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads