Get Answers to all your Questions

header-bg qa

provide solution for RD Sharma maths class 12 chapter Mean Value Theoram exercise 14.2 question 11

Answers (1)

Answer: 

Hint: Use Lagrange’s mean value theorem formula.

Given:Use Lagrange’s mean value theorem on (b-a) \sec ^{2} a<\tan b-\tan a<(b-a) \sec ^{2} b , where 0<a<b<\frac{\pi}{2}.

Solution:

\text { Let } f(x)=\tan x \text { in }(a, b) \text { where } 0<a<b<\frac{\pi}{2}

\therefore f (x) is continuous in [a, b] and differentiable in (a, b)

Now, f^{\prime}(x)=\sec ^{2} x

\Rightarrow f^{\prime}(c)=\sec ^{2} c

By Mean Value Theorem,

\begin{aligned} f^{\prime}(c) &=\frac{f(b)-f(a)}{b-a} \\ f^{\prime}(c) &=\frac{\tan b-\tan a}{b-a} \end{aligned}                                    c \in(a, b)

\begin{aligned} &\Rightarrow a<c<b \\ &\Rightarrow \sec ^{2} a<\sec ^{2} c<\sec ^{2} b \\ &\Rightarrow \sec ^{2} a<\frac{\tan b-\tan a}{b-a}<\sec ^{2} b \end{aligned}

Hence, proved.

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads