Get Answers to all your Questions

header-bg qa

A quadratic polynomial, whose zeroes are –3 and 4, is

(A) x^2 - x + 12

(B)x^2 + x + 12

(C) \frac{x^2}{2} - \frac{x}{2} -6

(D) 2x^2 + 2x -24

Answers (1)

Answer. [C]

Solution.  Polynomial : It is an expression of more than two algebraic terms, especially the sum of several terms that contains different powers of the same variable(s) and a quadratic polynomial is polynomial of degree 2.

(A)  p(x) = x^2 - x + 12

put x = –3                                                                            put x = 4

p(-3) = (-3)^2 - (-3) + 12                                 p(4) = (4)^2 - 4 + 12

      = 9 + 3 + 12 = 24 \neq 0                                           = 16 - 4 + 12 = 24 \neq 0

(B) p(x) = x^2 + x + 12

put x = –3                                                                                    put x = 4

p(-3) = (-3)^2 - 3 + 12                                               p(4) = (4)^2 + 4 + 12

        = 9 + 9 = 18 \neq 0                                                        = 16 + 16 = 32 \neq 0

(C) p(x)=\frac{x^2}{2} - \frac{x}{2} -6

put x = –3                                                                    put x = 4

p(-3)=\frac{(-3)^2}{2} - \frac{-3}{2} -6                                 p(4)=\frac{(4)^2}{2} - \frac{4}{2} -6

            =\frac{9}{2}+\frac{3}{2}-6                                                                  =\frac{16}{2}-2-6

            =\frac{9+3-12}{2}=0                                               = 8 - 8 = 0

(D) p(x) = 2x^2 + 2x - 24

put x = –3                                                                    put x = 4

p(-3) = 2(-3)^2 + 2(-3) - 24              p(4) = 2(4)^2 + 2(4) - 24

          = 18 -6 - 24                                                  = 32 + 8 - 24

           = -12 \neq 0                                                       = 16 \neq 0  

If –3, 4 is zeros of a polynomial p(x) then p(–3) = p(4) = 0

Here only (C) option satisfy p(–3) = p(4) = 0

Posted by

infoexpert21

View full answer