Get Answers to all your Questions

header-bg qa

For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.

(i)\frac{-8}{3},\frac{4}{3} 

(ii) \frac{21}{8},\frac{5}{16}

(iii) -2\sqrt{3}, -9

(iv) \frac{-3}{2\sqrt{5}},-\frac{1}{2}

Answers (1)

(i)  Answer. \left [ -2 , -\frac{2}{3}\right ]

Solution. Zeroes : zeroes of the polynomial are the value(s) that makes it equal to 0.

Here, sum of zeroes =\frac{-8}{3}

Product of zeroes =\frac{4}{3}

Let p(x) is the required polynomial

p(x) = x2 – (sum of zeroes)x + (product of zeroes)

=x^{2}-\left (\frac{-8}{3} \right )x+\frac{4}{3}

=x^{2}+\frac{8}{3}x+\frac{4}{3}

Multiply by 3

p(x) = 3x^2 + 8x + 4

Hence, 3x^2 + 8x + 4 is the required polynomial

p(x) = 3x^2 + 8x + 4

= 3x^2 + 6x + 2x + 4

= 3x(x + 2) + 2(x + 2)

= (x + 2) (3x + 2)=0

x = -2,\frac{2}{3}  are the zeroes of p(x).

(ii) Answer. \left [\frac{5}{2}, \frac{1}{8} \right ]

Solution. Zeroes : zeroes of the polynomial are the value(s) that makes it equal to 0.

Here, sum of zeroes =\frac{21}{8}

Product of zeroes =\frac{5}{16}

Let p(x) is the required polynomial

p(x) = x2 – (sum of zeroes)x + (product of zeroes)

=x^{2}-\left (\frac{21}{8} \right )x+\frac{5}{16}

=x^{2}-\frac{21}{8} x+\frac{5}{16}

Multiply by 16 we get

p(x) = 16x^2 - 42x + 5

Hence, 16x^2 - 42x + 5 is the required polynomial

p(x) = 16x^2 - 42x + 5

= 16x^2 - 40x -2x + 5

=8x(2x - 5) - 1(2x - 5)

=(2x - 5) (8x - 1)=0

x=\frac{5}{2}, \frac{1}{8}  are the zeroes of p(x).

(iii) Answer. \left [-3\sqrt{3}, \sqrt{3} \right ]    

Solution. Zeroes : zeroes of the polynomial are the value(s) that makes it equal to 0.

Here, sum of zeroes -2\sqrt{3}

Product of zeroes = –9

Let p(x) is required polynomial

p(x) = x2 – (sum of zeroes)x + (product of zeroes)

=x^{2 }-(-2\sqrt{3})x+(-9)

=x^{2 } +2\sqrt{3}x+(-9)

p(x)=x^{2 } +2\sqrt{3}x+(-9)

Hence, x^{2 } +2\sqrt{3}x+(-9)  is the required polynomial

p(x)=x^{2 } +2\sqrt{3}x+(-9)

=x^{2 } +3\sqrt{3}x-\sqrt{3}x+(-9)

=x (x+3\sqrt{3})- \sqrt{3}(x + 3 \sqrt{3})

=(x+3\sqrt{3})(x - \sqrt{3})=0

x =-3\sqrt{3}, \sqrt{3}  are the zeroes of p(x)

(iv) Answer. \left [\frac{\sqrt{5}}{2}, \frac{-1}{\sqrt{5}} \right ]

Solution. Zeroes : zeroes of the polynomial are the value(s) that makes it equal to 0.

Here sum of zeroes \frac{-3}{2\sqrt{5}}

Product of zeroes =-\frac{1}{2}

Let p(x) is the required polynomial

p(x) = x2 – (sum of zeroes)x + (product of zeros)

p(x)=x^{2}-\left (\frac{-3}{2\sqrt{5}} \right )x+ \frac{-1}{2}

p(x)=x^{2}+\frac{3}{2\sqrt{5}} x- \frac{1}{2}

Multiplying by 2 \sqrt{5}  we get

p(x)=2 \sqrt{5}x^{2}+3x-\sqrt{5}

Hence, 2 \sqrt{5}x^{2}+3x-\sqrt{5}  is the required polynomial

p(x)=2 \sqrt{5}x^{2}+3x-\sqrt{5}

=2 \sqrt{5}x^{2}+5x-2x -\sqrt{5}

=\sqrt{5}(2x+\sqrt{5})-1(2x+\sqrt{5})

=(\sqrt{5}x -1)(2x+\sqrt{5})

\left [\frac{-\sqrt{5}}{2}, \frac{1}{\sqrt{5}} \right ]  are the zeroes of p(x).

Posted by

infoexpert21

View full answer