Get Answers to all your Questions

header-bg qa

A window of a house is h metres above the ground. From the window, the angles of elevation and depression of the top and the bottom of another house situated on the opposite side of the lane are found to be α and β, respectively. Prove that the height of the other house is h (1 + tan α cot β) metres.             

Answers (1)

Solution.         According to the question :
                      
 

Let the height of the other house is X.
In \bigtriangleupDCF.
\tan \alpha = \frac{P}{B}= \frac{EC}{DC}
\tan \alpha =\frac{x-h}{DC}
DC= \frac{x-h}{\tan \alpha }\cdots \left ( 1 \right )
In \bigtriangleupDAB
. \tan \beta = \frac{P}{B}= \frac{DA}{AB}
\tan \beta = \frac{h}{AB}= \frac{h}{DC}         \left ( \because AB= DC \right )
\tan \beta = \frac{h}{DC}
DC= \frac{h}{\tan \beta }\cdots \left ( 2 \right )
from equation (1) and (2)
\frac{X-h}{\tan \alpha}= \frac{h}{\tan \beta}
X-h= \frac{\tan \alpha h}{\tan \beta }
X= \frac{\tan \alpha h+\tan \beta h}{\tan \beta}
X= \frac{h\left ( \tan \alpha +\tan \beta \right )}{\tan \beta}
separately divide
X= h\left ( \frac{\tan \alpha }{\tan \beta }+1 \right )
X= h\left ( 1+\tan \alpha \cot \beta \right )        \left ( \because \frac{1}{\tan \theta }= \cot \theta \right )
X= h\left ( 1+\tan \alpha \cot \beta \right )
Hence proved

Posted by

infoexpert27

View full answer