Get Answers to all your Questions

header-bg qa

Consider a P-V diagram in which the path followed by one mole of a perfect gas in a cylindrical container is shown in the figure.

a) find the work done when the gas is taken from state 1 to state 2

b) what is the ratio of temperature \frac{T_{1}}{T_{2}} if V_{2}=2V_{1}

c) given the internal energy for one mole of gas at temperature T \left (\frac{3}{2} \right )RT, find the heat supplied to the gas when it is taken from state 1 to 2, V_2 = 2V_1.

Answers (1)

(a) Let  P_{1}V_{1}^{\frac{1}{2}}=P_BV_B^{\frac{1}{2}}=K

And P=\frac{K}{V^{\frac{1}{2}}}

Work done for process 1 to 2; WD=\int_{V_{1}}^{V_{2}}PdV=\int_{V_{1}}^{V_{2}}\frac{K}{V^{\frac{1}{2}}}dV=K\left [ \frac{V^{\frac{1}{2}}}{\frac{1}{2}} \right ]=2K\left [ \sqrt{V_{2}}-\sqrt{V_{1}} \right ]

WD from V1to V2=

dW=2P_1V_1^{\frac{1}{2}}V_2-V_1=2P_2V_2^{\frac{1}{2}}V_2-V_1

(b) Equation of ideal gas PV=nRT

T=\frac{PV}{nR}=\frac{K\sqrt{V}}{nR }

T_{1}=\frac{K\sqrt{V_{1}}}{nR }and T_{2}=\frac{K\sqrt{V_{2}}}{nR }

\frac{T_1}{T_2}=\frac{\sqrt{V_1}}{\sqrt{V_2}}=\frac{1}{\sqrt{2}}

(c )

\Delta U=\frac{3}{2}R\Delta T=\frac{3}{2}R(T_{2}-T_{1})

\Delta U=\frac{3}{2}RT_1(\sqrt{2}-1)

dW=2P_1V_1\frac{1}{2}\left (\sqrt{V_2}-\sqrt{V_1} \right )

dW=2P_1V_1^{\frac{1}{2}}(\sqrt{2V_1}-\sqrt{V_1})

dW=2P_1V_1(\sqrt{2}-1) =2nRT_{1}(\sqrt{2}-1)

n=1

dW=2RT_1(\sqrt{2}-1)

dQ=dW+dU=2RT_{1}(\sqrt{2}-1)+\frac{3}{2}RT_{1}\left (\sqrt{2}-1 \right )

=(\sqrt{2}-1)RT_{1}\left (2+\frac{3}{2} \right )

Posted by

infoexpert24

View full answer